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Abstract

The conventional wisdom in the scientific computing community is that the best way to solve large-
scale numecrically -intensive scientific problems on today’s parallel MIMD compulcrs iS to usc Fortranor C
programmed in a data-parallel style using low-level message-passing primitives. This approach inevitably
lcads 10 non-portable codes, extensive development time, and restricts parallel programming 1o the domain
of the expert programmer. Wc belicve that these problems are not inherent to parallel computing but arc the
result of the tools uscd. Wc will strew that comparable performance can be achicved with little cftort if bet-
ter 1001s that present higher level abstractions arc used. The vehicle for our demonstration isa 21 clectro-
magnetic finite clement scattering code  w c. have implemented in Mentat, an object-oriented paraticl
processing system. Wc briefly describe the application, Mentat, the implementation, and present perfor-

mance results for both a Mentatand a Il;ind-coded parallel Fortran version.1

1.0 Introduction

Developing scientific applications on current parallelcomputers is difficult duc to the absence of suit-
ablc programming tools and models to manage the complex details of parallel programming, The vast
majority of today’s systems arc programmed in an arc]liicc(urc-specific way using low-level message-pass-
ing primitives that arc both hard to usC and lead 1o non-portable codes. These systems are typically pro-
grammed in Fortran or C in a data-parallel SPMD style. W ¢ belicve that the problem is not the
architectures, but the tools that have been used to program them, Wc will show inthis paper that onc can
parallelize a real scientific application and obtain good performance with little effortif the right tools arc
Used.

The too] that we have used is Mentat|5], an object-oriented parallel processing system developed at the
University of Virginia. Using Mentat, the user is responsible for identifying object boundaries and specify -
ing those object classes that have sufficient computational complexity to warrant parallel execution. The
Mentat compiler and run-time system arc responsible for managing al] aspects of communication, synchro-
nization, and scheduling for the user. Mentat performs tasks that humans perform poorly, while the pro-
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grammer performs tasks (data and program decomposition) that compilers perform poorly. ‘ 1'bus, Mcntat
cxploits the capabilities of both compilers and humans. Menlat is currently available on arange of plat-
forms from networks of hetcrogencous workstations to tightly coupled machines such as the InteliPSC/
860. An important benefit of the Mental approach is that applications developed on onc p] at form arc source
code-por[ab]c from onc plat form to another. This cli minates another problem common to writing soft ware
for parallel architect urcs, thatapplications arc not portable across p] atforms.

The vehicle for our demonstration is a 2D electromagncetic finite clement scattering code (E M). The
applicat ion was choscn for threc reasons: 1) itisared, non-t rivial, scient i fic code; 2) the scquentialFortran
code was readily avail able; and 3) the application had previously been hand parallelized for a number of
MIMD computers (Caltech/JPL. Mark 111{p Hypercube, Intel iPSC/860, and Intel Delta) using explicit mes-
sage-passing primitives, providing us with the opportunity 10 compare the performance of hand generated
paralelism against our compiled Mentat version. The code computestheclectric or magnetic ficld On an
unstructured finite clement mesh which defines the scatlering objects as well as the space surrounding it.

Our work on the Mentat implementation of this code focuses on two issues: what is the overhead penalty
which must be paid in order to usc Mentat for this application, and how easy is it to apply Mentat to a sci-
entific application like the finite clement scattering code. What wc have found is that the application
domain mapped wecllto the object-oriented paradigm, and that the performance of the Mentat version is
comparable to the hand-coded version for small numbers of processors, but dots not scale as well in this
initial implementation,

This paper is organized as follows. Scction 2 discusses the EM application and finite clement method.
Section3 provides an overview of Mcntat. Scction 4 discusses the objcc[-oriented redesign of the 1M
application. Scction 5 describes the parallel EM implementation via Mentat. Scction 6 presents some pre-
liminary results obtained with the Mentat version, and Scction 7 provides a summary and future work.

2.0 The EM Problem

The finite clement method (FIEM) has been in usc for many years in structural mechanics [ 10] and has
become popular in recent years as a technique for usc on clectromagnetic problems [ 13]. 1'EM has the
advantage of being able to deal with the specific geometry of objects by using unstructured gridding which
follows an objcct’s shape. This can be of particular importance in M scattering problems, where the cor-
rectrepresentation of ascatlerer’s surface is necessary for accurate computation. Finite elements arc used
in 2 and 3 dimensional clectromagnet ic scattering problems 1o model objects of complex com position. The
“hand-coded” 1©1:M code has been implemented On several MIMD computers, using explicit message pass-
ing. A complete descri ption of this co(Jdc, along wilh parallelimplementation description and performance,
is found in [3]. For this work, wc have concentrated on a2 FEEM problem.



The general scattering problem solved by the 2D EM code is illustrated in Fig. 1. The code solves a
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Figure  The General 2D M Scalttering Problem

Helmholtz equation for the clectric or magnetic ficlds in the vicinity of a set of scatterers:
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Here E is the clectric field, and it and € are materials constants. An absorbing boundary condition on the

boundary 1" uniqucly specifics the problem. The finite clement method solves the cquivalent “weak form”

integral cquation:
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The boundary condition is incorporated into the surface integral on .

The 2D integral equation is transformed into a sct of lincar cquations by dccomposing the problem
domain into a sct of finite clements. The problem domain €2 is meshed with nodal points at which the solu-
tion is to be found, matching the geometry of the objects. These nodes are then tiled with a set of finite cle-
ments as in Fig. 2. In 2D, the clements might be triangles or quadrilaterals. A set of basis functions arc
defined at cach node in the mesh, which have nonzero value only within the elements of which it is a part.
These basis functions are generally some polynomial function which is 1 at the node defining it, O at all
Mu_:o_. nodes in the element, and 0 along the edges of the clement opposite the defining node. An ecxample of
a lincar basis function at a node in a scetion of finite clement mesh is given in Fig. 3. The function is con-
tinuous inside and across clements, dropping to zero at the clement cdges which do not intersect the node.
On all other elements in the grid, the basis function is identically zcro.
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Figurc 2. A Simple Finite Elcment Mesh Figure 3. Node-based l.incar Basis Function

The field quantities (clcctric or magnetic) may be expressedasa linear comb ination of’ these basis func-

lions:
I (x) = Zdl.gl. (x) 3)
l

where, &;(x)isthe basis functionatthe ith node, and d; is its cocfficient in the representation for E,
Notice that since, by definition, all other basis functions are () at nodei, the value of’ d isin fact the valuc of
I£atthe ith node. Wc also write the test function T in terms of thesc basis functions. Substituting these into
Eq. (2), and recognizing that the test function 1" must be arbitrary results in a matrix equation for the field

cocfficients d;;

K-d=F (4)

where d is the vector of ficld cocflicients d; from Fq. (3), and K and F, known as the stiffness matri x and
force veclor, arc given by cxpressions involving integrals of individual basis functions or products of basis
functions. Since all basis functions arc localized 1o a handful of finite elements, these integrals arc non-zero
only for thosc clements which contain the basis functions involved. Thisresults in a K matrix which is
quilt sparse. As amaltler of practice, these integrals arc computed on an clement by clement basis, with
cach clement’s contribution to K and ¥ added inits turn. [ this manner, the complexity of integrating over
adomain of irregular gcometrics isreduced 1o integrating over a sctof regular finite sized clements.

This is the basic finite clement method. The EM finite element application consists of two primary com-
putation phases: 1) matrix assembly and 2) matrix solve. Inmatrix assembly, the finite clements compute
contributions (i.e. matrix values) thatarc assembled (i.e. added) into the stiffness matrix K. The stiffness

matrix isbanded and symmetric, in additionto being very sparse. During matrix assembly, the force VCC10I’



I is also computed by the clements. This vector becomes the right-hand-side vector during the matrix
solve compilation.

in matrix solve, the s ystem of cquat ions represented by the stifiness matrix with the force vector as the.
rigl](.hand-side, is solved by aconjugate-gradicnt algorithm known as lli-conjugate gradicnt[11]. The
algorithm requires three basic operations: matrix-vector multiplication, vector dot product, and vector
saxpy. ‘1 he solve phase poses challenges to achieving good perform ance on parallel machines duc to the
sparse nature of the malrix-vector operations.

3.0 Mentat overview

Mentatis a parallel object-oricn(cd programming environment developed at the University of Virginia,
Mentat was designed to address two problems that plaguc programming parallcl MIMD architectures,
First, writing parallel programs by band is very difficult. The programmer must manage communication,
synchronization, and scheduling. The burden of correctly managing the environment often overwhelms
programmers, and requires a considerable investment of time and energy. Second, once implemented on a
particular MIMD architecture, the resulting codes arc usualy not portable. Thus, considerable effort must
bc re-invested 1o port the application to a ncw architecture.

Mentat offers a solution to these problems by providing: 1) easy-to-use paralleli sm; 2) high performance
viaparallel cxecution; and 3) applications portability across a wide range of platforms. The premise under-
lying Mentat is that writing programs for parallel machines dots not have to be hard. Instcad, it is the lack
of appropriate abstractions that has kept parallel architectures di flicult to program, and henee, inaceessible
10 m ainstrcam, production system programmetrs,

The Mentat approach exploits the objccl-oriented paradigm to provide high-level abstractions that mask
the complex aspects of parallel programming, communication, synchronization, and scheduling from the
programmctr. Instcad of worrying aboutand managing these dctails, the programmer is free 1o concentrate
on t tie details of the application. The programmer uscs application domain knowledge to speci fy those
object classes (Mentat classes) that arc of sufficient computational complexity to warrant parallel exccu-
tion. The remaining complex tasks are handled by Mentat.

‘1’ here arc two primary components of Mentat: the Mentat Programming Language (MI' ],) [6] and the
Mentat run-time system [7].  MPL. is an object-oricn(cd programming language based on C++[14] that
masks the complexity of the parallel environment from the programmer. Ment at ¢l asses consist of con-
tained objects (focal and member variables), their procedures, and a thread of control. Instances of Mentat
classes, known as Mental objects, arc the compultation grains, Because Mentat is based on alayered virtual
machine model, and each layer introduces some amount of overhead, Mcntat classes must be medium-to-
Targe grained to mask these overheads.




Mentat classes are denoted by the inclusion of the keyword “mentat” in the class definition, as in the
mentat class sparse. worker shown below. Mcentat classes may be defined as cither persistentor regular,

persistentmenitatclasssparse worker  (
/// private dat a and functi on nenbers
public:
compl exvec* mve ¢ mul t (complexvee* vece);

);

Instances of regular Mental classes arc logically stateless, thus tbc implementation may create a ncw
instance to handle every member function invocation. Persistent Mentat classes maintain state information
between member function invocations. This is an advantage for opcrations that require large amounts of
data, or that require persistent semantics. Instances of Mentat classes arc uscd exactly like C+4 classcs, as

in the fragment below. One difference is that persistent Mentat objects are instantiated by the create com -

Sparsc Worker workor;

worker.create {);
result = worker.m vee mul (rhs vec);

mand.

Mental supports a notionof parallelism encapsulation. Parallelism cncapsulation takes two forms that
we call intra-object encapsulati on and inter-object encapsulatio n. Intra-object encapsulation of parallclism
mecans that calers of a Mcntat object member function arc unaware of whether the implementation of a
member function is scquential or parallel. Inter-object encapsulation of parallelisin means that program-
mers of code fragments (c.g., a Mentat object member function) need not concern themselves with the par-
allcl execution opportunitics between the different Mentat object member functions they invoke. Thus, the
dataand control dependencies between Mentat class instances involved in invocation, communication, and
synchronization arc automaticall y detceted and managed by the compiler and run-time system without fur-
ther programmer intervention.

The compu tation model underlying Mentat is the macro data flow model [7], a large-grain, graph-bascd,
data-driven computatior 1 model. The Mentat run-time system supports the macro data flow model via the
provision of a virtual macro data flow machine. Because the compiler uscs a virtual machine model, port-
ing applications 10 a new architecture does not require any user source level changes. Once the virtual
machine has been porled, user applications arc re-compiled and can execute immediately.

Mentat rum on Sun 3s, Sun 4s, the InteliPSC/2 and iPSC/860, and the Silicon Graphics Iris. Wc arc cur-
rently porting Mentat to the TMC CM-5 and the Intel Delta (Paragon). Performance results ona range of
applications arc available, and arc uite encouraging [8].

4.() Object-Oriented KM Design

Converting the sequential 1ortran EM code into a parallel object-oricmtcd code via Mentat requires two
major steps: 1) porting the existing code 1o ascquential object-oriented language (C+ + ) and 2) porting the

0




C44 implementation to Mentat. Both 1) and 2) pose diflerent challenges. The Mentat conversion will be
discussed in the next section. The C+4 conversion requires a redesign or “paradigm shift” from the Tortran
domain to the object-oricnted domain. This is a non-trivial conversion cven before opportunitics for paral-
lelism are considered. The use of global structures, aliasing, and the lack of data abstraction in Fortran
madc the transition to C++ challenging.

4.1 The Approach

There are several approaches that can be taken to convert an existing Fortran implementation to C-++,
and of these we considered two candidates: 1) reuse the Fortran artifact and wrap C++ classes around the
existing code and 2) redo cverything in C4+4. Although we operated on a very short time budget, we felt
that option 2) was clcarly the best choice since this affords us the greatest fiexibility in experimenting with
different problem decompositions. We also belicve that a “pure” object-oricnted system is casicr to extend
than a mixed-language implementation. Since this work is part of a continuing rescarch cffort, this is an
important factor. The down-side is a performance loss experienced in the sequential object-oriented code
duc to disparitics in current compiler technology and the quality of existing Fortran numeric librarics. We
cxpecet this gap to close in the future, however.

Our approach then was to treat the Fortran code as a functional specification of the behavior of the EM
application at an algorithmic level. For example, the clement computation implementation in C++ mir-
rored the Fortran. The Fortran code was used as a guide or reference for low-level details and the mathe-
matics. At the high-level, we sclected a class-object hicrarchy that reflected our knowledge of the problem
domain. Once a natural class structure was cslablished, we inspected the Fortran code for algorithmic
details that were necessary to faithfully reimplement the numeric computations encapsulated in the C++
member functions.

During this conversion the main difficulty was the lack of data abstraction in the Fortran code - this is
not surprising since Fortran docsn’t support this notion. The data stractures were typically represented as
collections of scparate arrays. Data that was logically connected had to be inferred by its use or by the code
comments. An example of this was the absence of an explicit representation for the clements themselves.
The implicit clement representation was scattered across numerous global arrays. The object-oriented
approach requires just the opposite: that logically-connected data be represenied together and encapsu-
lated. Another difficulty with the conversion was the use of complex numbers extensively in the Fortran
code. We had to implement a fairly extensive complex class in C4+4. Our implementation was Iess efficient
than the built-in, optimized, complex data type provided by Fortran.

One of the rescarch objectives of this work is to consider the cffort involved in converting cxisting sci-
cntific applications 10 an object-oricnted platform (C++) and then to Mentat. The port from the sequential
Fortran implementation 1o a fully tested C44 code ook two graduate students six weeks (about one man-
month of effort). Part of this time was nceded 10 gain familiarity with the problem domain, which was
unfamiliar, and 1o review the details of Fortran, We feel that the short time frame validates our decision 1o

implement a C+4 version and also provides further evidence for the suitability of the object-oriented para-
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Figure 4. Finite element class hicrarchy

digm as applied to scientific applications like the EM problem. Howcever, while this evidence suggests a
good fit between the object-oriented paradigm and this particular problem domain, there are performance
trade-offs. These are discussed in the final scction.

4.2 C++ Classes

‘The heart of the sequential EM implemen tation is its decompo sition into C++ classes. Some of the C++
classes will become parallel or Mental classes in the parallel EM implementation. Discussion of Mentat
classes is deferred until the next section. The problem domain can be broken down into two phases: cle-
ment assembly and matrix solve. The class-object hicrarchices reflect this decomposition.

The first phasc involves the finite clement computations needed to construct the sparse stiffness matrix
and right-hand-sidc vector. During this phase, cach clement computes a contributio n to the matrix. We rep-
resented the elements as C+4 4 objects contained within a finite clement class hicrarchy, shown in Fig. 4.

The hicrarchy is rooted by the virtual base class element and the derived classes reflcet the different
types of finite clements that arc used in 1$M problems. The clement type depends both on the physical char-
acteristics of the material (¢.g. 213/3D or triangle/quadril ateral), and on the way the clement computes its
matrix contribution (e.g. 3pi/opt quadrature). A part of the C++4 specification for the finite clement hicrar-
chy is shown in Fig. 5.

The clement representation is simply the nodal points that define its boundaries. The derived classes
contain clement-specific information, such as the basis functions, that are needed in the clement computa-
tions. The elemen t contributio ns are computed by get kf and arc assembled into the sparse stiffness matrix

during the first phase. This sparse matrix is stored as a list o f sparse vectors, cach row is represented by the



/ / Base class of the element hicrarchy
class element {

int *nodes; [/ nodal points
int Nnum nodes;

publ i ¢:
//7 returns matrix and force-vector contributions
virtual K contrib* get  kf ();
element ();

}s

/ / 3pttriangle 2D element
class 2D 3pl element : 2D element
// basis” frls

pub] ic:

KF contrib* get kf () ;
2D 3pt element ‘(i nt*nodes,...);
b

Figure 5. Finite element class specification

sparse vec class. The sparse matrix is a special class known as a Menlat class and this is discussed in the
next section,

During the second phase of the computation, matrix solve, “dense” vectors of complex numbers arc
computed by the application. The representation of complexvee is a memory-contiguous  variable-sized
array of complex type. The complexvec class specification is given in Fig. 6. Memory contiguity isimpor-
tant in the parallel domain for objects that are transported between address spaces (such as objects of type
complexvee) ,

Both the sparse. vee and complexvee classes had been implemented previously and wc were able 10
reuse them with slight modification (1o usc complex numbers), ‘The C+4 classes form the basis for the par-
alleliM design. The remaining C+ -t classes inthe application have a dual role: these classes can be treated
as C-t+ classes asin lilt sequential version or as Mentat classes in the parallel version. Thesc arc discussed
next. Inthe nextsection we will also show how everything fits together in the parallel EM implementation.

S.() Mentat KM Design

The design decisions that guided the transformation from the sequential Fortran implementation to the
scquential C++ were motivated by three factors: 1)) flexibility/extensibility, 2) fidelity and 3) support for
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¢l ass complexvec : pub] icDhDarray {
int start index, range;
// memory continguous representation
complex a[l]:

publi c
complexvec (i nt col s) ;
complexvec* saxpy (compl exvec *f , complex& m) ;
complex vec*ssxpy(complexvec*f, complexé m) ;
conmplexvec* dot product (complexvec * )

Fig. 6. Complexvec class speci fication

parallclization. Points 1) and 2) have been discussed and this scction addresses point 3), transitioning to the
parallel 1M code.

"I'he paralle] EM code is based onthe paral Icl objexl-orient cd modelof computat ion provided by Mentat.
While the design of the parallel XM code is concerned with points 1) and 2) above, it is driven by perfor-
mance and scalability. in the parallel domain, the most critical factors affecting performance arc computa-
lion granularity and load balance. In Mentat, computation granularity is specificd via a mechanism known
as Mental classes, and load balance is achicved by an even partitioning of work across the instantiated
Mentat objects.

"The parallel 1M system design based on Mentat is illustrated in Fig. 7. The assembl y (phase 1) and
solve computations (phase 2) arc shown. The remainder of this section will describe the Mental classes
usc(J, the rationale for choosing them, and other important details of the parallel EM design and Mental
implement alien.

The sclection of Mentat classes is based upon exploiting opportunitics for parallclism and achicving an
acceptable computation granularity given Mentat overhicads and the characteristics of tile target architec-
ture, Our target is the Intel iPSC/860, a very unbalanced machine in which communication costs dominate
computation costs by several orders of magnitude. The Mentat classes will need to be “computationally
heavy”, i.e. large-grainc(i, to achicve reasonable, performance give.n these factors. The EM application per-
forms two main computations, clement assembly and matrixsolve, and time will be implemented via
Mentat classes.

Jior clement assembl y, there arc many opportuniticsfor parallelism since the clement computat ionsarc
independent and may proceed in paralicl. To exploit maximal parallclism, we would turn tile finite clement

classes (of Fig.4)into Mentat classes. J lowever, asingle clement assembly computation istoo fine-grained
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problem  elmt_collf] K sparse_worker [1

~O

Phase 1- assembly Phase 2- solve

Figure 7. Parallel EM architecture

persistent mentat class elmt coll |
clement** elenents;
int element num;
public: )
// element sctup and partitioning
void initialize (string *{f, int i, int num coll);

// computeandassembleal 1 element s
vol d assemble (sparse matrix*K, svect or*F) ;

Figure 8. Mentat class cImt_coll specification

for Mentat and this will lead to unacceptably poor performance. Instcad, we define a Mcentat class which
computes the contributions fora collection of clements, elmt coll, scc Fig. 8. Notice that the
e 1 mtcoll class contains C+ + objects (of t ype clement) as part of itS representation.

A number of e 1 mt. co 110bjects are instantiated at runtime and cach computes in parallel. Each
celrmtcollis assigned enough clementsto achicveanacceptable computation granularity, The number
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persist.ent mentatclass sparsematrix {
/] sparsec mat rjx representatl jon
sparse vec** mat. ix;
int si ze;

// sparse_ worker information
int num workers;
sparse worker*workers;

public:
/ 7/ Fachelmt co]] assembles to matrix

void assemble (K list* K contrib);

// Solve matrixeqguation using rhs vector}l
void solve (svector*t');

// Set up matrix with number of workers
void initialize (int num workers);

Figure 9. Mcntat class sparse_ matrix specification

of elmt col 1 objects instant iatcd and how the individual clements get assigiicd to a parliculat
elmt co]] arc discussed later. Once the elmt collscompule the matrix contributions and right-
hand-side force-vector values associated with their contained clements (via get kf), these values must be
assembled into the stiffness matrix and force-vector respectively. The assemb le member function defined
on elmt co]] initiates the clement computations and invokes an assemble operation onthe matrix. The
Mentat ¢lass Sp qrse matrix represents the stiffness matrix, see Fig. 9. Matrix assembly is performed via
the member function assemble called by cach clmt coll. The definitionof the Mental class svector,
the force-veclor, is omitled.

Most of the computation time is spent in the matrix solve phasc. The solve computation is performed by

an iterative preconditioned Bi-conjugate gradient algorithm (B CG) [11] implemented by the solve member
function of the Mentat class sparsematrix Our implementation exploits the most profitable opportu-

nity for parallclism in the algori thm, namcly the sparse matrix-vector multiplicati ons donc in cach iteration
of the BCG algorithm,

Paraliclizing the matrix-vecto r multiplications requires that another class Mentat class, sparse  worker.
be defined, scc Fig.10.The sparse worker class is responsible for performing matrix-vector multipl -
cation on disjoint regions of the sparse matrix. A number of sparse worker objects arc instantiated at
runtime, and the sparse matrix is partitioncdinto row-contiguous regions and distributed to the




persistent mentat class sparse worker {
// sparse worker representation
sparse vec** my rows;

// region of global matrix stored by worker
region my reg;

/ / partial result for matrix-vector multiply
complexvec* result

public:

// Distributes rows to worker
void initialize (sparsc_vec list*sparse rows, .. . )

/] Sparse mvec multiplication
complexvec* m vec mult (complexvec* vec) s

Figure 10. Mentat class sparse_ worker specification

sparse worker objects. This is done via the sparse_ worker member function initialize. Once the
sparse matrix has been distributed fullytothe sparse worker objects,the sparse matrix
object engages the sparse workersin parallel malt’ix-vector multiply operations (via m vec mult)
repeatedly  during  t h e solve phase. The spa r s¢ WO r kers are  cncapsulated  within the
sparsc matrix (Fig.9)andthishas performance implications as wc will scc.

The Mentat classes, spar se mat ri x, elmt co] 1, and sparse wor ke, reflect the compu ta-
tionally-intensive phases of the applicationand resultin a granularity suitable both for Mentat and the tar-
gel architecture. These classes also allow sufficient parallelism in the application 10 be exploited. One
important advantage of Mcntat iS that the serial XM code requires only a fow “ifdefs” to tum these Mentat
classes into C+ + classes (scc Fig. 11) - under 20 lines of code are unique to cither the serial or parallel ver-
sion,

Atruntime, the programmer specifics the number of elmt  co 11 objects for the assembly phase and
the number of spar se wor ker objects for the solve phase. The number of objects should match the
total number of available processors assuming the granularity is sufficient. FFor large applications, this is
usually the case. Onthe iPSC/860 under NX, only onc object (i.e. process) may be placcdona processor
Since these phases arc non-overlapping (i.e. solve dots not begin until assembly has completed), the num-
bcr of ¢1mt co] 1s and sparse workerswillbe the same.

Achieving acceptable performance in the parallel EM code depends upon good load balance. 1t is sufli-
cient to load balance the assembly and solve phases separately since they arc independent - onl y i synch-
niz.aien between these phases is needed. The assembly load balance requires thatthe e 1 mt collobjects
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#ifdef Mentat

persistent mentat class sparse worker {
#el se!

class sparse. worker {

#endif

I/l as above

}:

Figure 11. Dual Mcentat/C+ + class specification using “ifdefs”

cach perform about the same amount of computation. An even partition Of the clements across the
¢ lmtcollswould seem to be an easy solution. However, the general 1M problem will contain clements
of diflerent types - more complex clements require more computation to determine matrix contributions. A
good load balance solution cnsures that cach clmt_ coil has roughly the same number of clements of cach
type. As as approximation to this, our implementation randomizes the clement input files and randomly
assigns clements to the elm_ coil objects.

Similar] y, load balancing the solve phasc requires that the sparse worker objects arc evenly bal-
anced for the matrix-vector multiplications. An even partition of the sparse mat r i X across the
sparse workersmay not lead 10 load balance since the matrix has non-uni form sparsity (i.e. the num-
ber of non-zeros per row differs) and only non-zero positions of the matrix will be multiplicd by the
sparse workers.Instcad, load balancing is achicved by ensuring that each sparse worker has
about the same number of non-zeros in the matrix region that it has been assigned. Note that the number of
rows assigned 10 each sparse worker will, in general, be different.

The initial parallel EM design has a number of flaws that limit the scalability and performance of the
system. The most obvious as seen clearly in Fig.7isthat a single sparse matr i x object is a bottleneck
for both matrix assembly and matrix solve. During the solve phasc, partial results from the matrix-vector
multiplics arc fanned into the sparse matrix, thus creating a communicat ion bottleneck . The problem
is duc to the cncapsulation of the sparse workers within the sparse matrix. This is a classic
problem With the object-oriented paradigm. ‘The single spar se matr ix object also limits (¢ size prob-
lems thatcan be run since the entire matrix is assembled in onc address space before it is distributed to the
sparsc workers. Furthermore, ho aticmpt was made to parallelize the dot products that occur within
the BCG loop. These dot products are a good source o f parallelism, especially for large veetors. Noncthe-
less, the perform ance resulls are good when compared to a hand-coded yersion that docs not suffer from
these limitations. The results are presented in the next section.

Once the C+ + version of the XM code had been fully implemented and tested, the Mental version (about
3000 lines of code) took aboul two weeks to complete. One of the major problems we had with Mentat on
the iPSC/860 was the need to force arithmetic operands tobe double-word aligned to get good perfor-
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Figure 12, Parallel EM performance with Mentat

mance on Ibis machine. This required some low-level pointer code and was time-consuming to implement
and test. The memory bottleneck imposed by the single sparse matrix objectdidnot alow our EM
problem to fit on @ 8MB iPSC/860 node at ORNI., a 128 node machine. We cventually ran on a 16MB/
node iPSC/860 at Caltech. Fortunately, the Mentat system binaries ported smoothly to the Caltech machine

- no recompilation of the Mentat system code was necessary.

6.() Preliminary Results

The initial Mentat EM code was developed on an tl-node InteliPSC/860 at JPL. and run on a 64-node
InteliPSC/860 at Caliech. The data collected arc from an EM application that consisted of 2304 9pt quad-
rilateral clements (9313 nodes). This is considered a small problem. We computed speedups with respect to
the sequential C4 + 1M code run on a single i860 node, scc Fig. 12.

The results arc divided into the several phases: 1) problem setup is the time taken for theel mt _ col 1s
to read the element files from CES and create the clement partitions, 2) assembly is the time taken for the
e 1 mt collstocomplete the matrix assembly operations, 3) assembly and distribute includes the time to
distribute the matrix outto the workers, 4) solve isthe time taken for the matrix solve operation, and 5)
totalis the total time taken by the application. Wc should reiterate that virtually no optimization of the
Mentat version had been performed.

Our results arc compared with a han(i-coded optimized parallel Fortran EM implementation that has
been indevelopment for some time. Wc expected the performance to be worse than the ban(i-coded ver-
sion, but how much? The results indicate that this is indeed the case, but speedups were achicved even
though the problem was small and the given implementation limitations that have been discussed, scc Fig.
13.
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Figure 13. Comparison of Mentat 1o FHand-coded 1EM version

Comparison of the Mentat and the hand-coded versions indicates that the Mentatimplementation is
competitive with the band-coded for small numbers of processors, but that performance docsn’t scale well
asthe number of processors iS increased. This iS duc to the limitations that have been discussed, namely
the sparse mat r i x bottleneck for assembly and matrix-vector communication, and the sequential dot
products in the solver. It is not surprising that the initial Mentat version does not scale given the design.

7.() Summary and Future Work

The early results of the rescarch are encouraging. The initial design and implementation of the parallel
EM code using Mentat took under 1two months, including the time 1o perform the “paradigm shift” from
Fortran to C+44. This indicates to us that the parallcl object-oriented model in general, and Mentat in partic-
ular, is wc]l-suited to this problem domain. Wc have validated only part of this claim: that the EM problem
has a natural representation in a object-oriented framework and we have provided further evidence that
Mentat isan easy-to-use programming cnvironment for developing parallel object-oriented scientific appli-
cations. However, the other part of the claim is that performance docs not suficr greatly with Mentat when
compared to the hand -coded version. Until the limitations with the current Mentat design are removed, this
claim cannot yet be made.

Other researchers have begun to report on the experience of using object-oriented implementation tech-
niques for scientific problems | 1 ,4]. Our expericnce issimilar to [ 1] inthat programmer cfficiency seems 1o
bea more clear benefit than exccution efficiency at present, The authors { 11 report that the C+ 4 perfor-
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mance iswithin an order of magnitude of the Fortran code (ours is within afactor of 2-3), and that this pro-
vides some hope.

While the performance was not as good as the hatld-coded version, wc have identified scveral perfor-
m ance cnhancements that arc being incorporated into the next parallel EM design. The mostimportant of
these is the elimination of the sparse matrix bottleneck - the matrix will be assembled in a distributed
fashion by the sparse workers dircctly, This will speed up assembly and climinate the need tocxplic-
itly distribute the matrix outto the workers. Wc arc also planning to distribute the dot products, parallcliz-
ing the inner products that occur in the BCG loop, thus eliminating the fan-in communication bottleneck to
the sparse mat. r i x. Instead, the spar se workers will interactin a more tightly-coupled fashion.
Some encapsulation will be traded for performance. These changes will alow us to ran much larger prob-
lems, and should yield a noticeable improvement in performance and scal ability.
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